01. Differentiation and Integration with symbolic package.
study :- syms, symfun
%----------------------------ScriptStartHere---------------------------------------------
clear all
clc
syms x % create symbolic variable
f=symfun(x^2,x) % create symmbolic fuunction
df=symfun(diff(f,x),x) %derivative of f with respect to x
intf=symfun(int(f,x),x) %intigration of f with respect to x
hold on
ez1=ezplot (f,[-10,10])
ez2=ezplot(df,[-10,10])
ez3=ezplot(intf,[-10,10])
set(ez1,'color' ,[1 1 0]) % yellow color
set(ez2, 'color', [0 1 0]) % Green colour
set(ez3, 'color', [0 0 0]) % Black colour
%----------------------------End---------------------------------------------------------
once you run the above code Mathlab will give the answer as bellow
df(x) = 2*x
intf(x) = x^3/3
2.
%----------------------------ScriptStartHere---------------------------------------------
clear all
clc
syms x m n a b ao;
assume(n,'integer');
assumeAlso(n>0);
assume(m,'integer');
assumeAlso(m>0)
f=symfun(x*log(abs(x)),x)
T=20;
l=T/2;
ao=int(f,x,-l,l)/T
a=symfun(int(f(x)*cos(pi*n*x/l),-l,l)/l,n)
b=symfun(int(f(x)*sin(pi*n*x/l),-l,l)/l,n)
appf=symfun(symsum(a(n)*cos(n*pi*x/l)+b(n)*sin(n*pi*x/l),n,1,m)+ao,[x,m])
ezplot(f,[-10,10])
hold on
ezplot(appf(x,20),[-20,20])
%----------------------------End---------------------------------------------------------
study :- syms, symfun
%----------------------------ScriptStartHere---------------------------------------------
clear all
clc
syms x % create symbolic variable
f=symfun(x^2,x) % create symmbolic fuunction
df=symfun(diff(f,x),x) %derivative of f with respect to x
intf=symfun(int(f,x),x) %intigration of f with respect to x
hold on
ez1=ezplot (f,[-10,10])
ez2=ezplot(df,[-10,10])
ez3=ezplot(intf,[-10,10])
set(ez1,'color' ,[1 1 0]) % yellow color
set(ez2, 'color', [0 1 0]) % Green colour
set(ez3, 'color', [0 0 0]) % Black colour
%----------------------------End---------------------------------------------------------
once you run the above code Mathlab will give the answer as bellow
df(x) = 2*x
intf(x) = x^3/3
RGB Triplet | Short
Name | Long Name |
---|---|---|
[1 1 0]
|
y
|
yellow
|
[1 0 1]
|
m
|
magenta
|
[0 1 1]
|
c
|
cyan
|
[1 0 0]
|
r
|
red
|
[0 1 0]
|
g
|
green
|
[0 0 1]
|
b
|
blue
|
[1 1 1]
|
w
|
white
|
[0 0 0]
|
k
|
black
|
2.
%----------------------------ScriptStartHere---------------------------------------------
clear all
clc
syms x m n a b ao;
assume(n,'integer');
assumeAlso(n>0);
assume(m,'integer');
assumeAlso(m>0)
f=symfun(x*log(abs(x)),x)
T=20;
l=T/2;
ao=int(f,x,-l,l)/T
a=symfun(int(f(x)*cos(pi*n*x/l),-l,l)/l,n)
b=symfun(int(f(x)*sin(pi*n*x/l),-l,l)/l,n)
appf=symfun(symsum(a(n)*cos(n*pi*x/l)+b(n)*sin(n*pi*x/l),n,1,m)+ao,[x,m])
ezplot(f,[-10,10])
hold on
ezplot(appf(x,20),[-20,20])
%----------------------------End---------------------------------------------------------
No comments:
Post a Comment